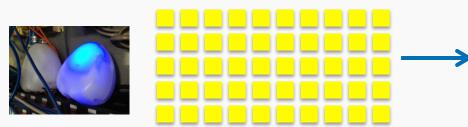
OAR Perspective on Air Sensors

Kristen Benedict
National Environmental Monitoring Conference
August 5, 2014

Agenda

- Current Monitoring Requirements
- Data Applications
- Data Collection/Fusion
- Sensor Messaging
- Acknowledgements

State of the Science


Emerging air monitoring systems (informal classification)

Group 1: Regulatory or regulatoryequivalent air monitoring stations Cost: 100Ks (in thousands), Data reliability = A+

Group 2: Smaller-footprint monitoring systems for community screening and research studies
Cost: 1-10Ks, Data reliability = B+ (target)

Group 3: Very small, very low cost systems enabling dense sensor networks, citizen science Cost: 0.1-1Ks, Data reliability = ?

(slide courtesy of Gayle Hagler)

Environmental Regulation

Criteria Pollutants

 Federal Reference Methods (FRM)/Federal Equivalent Methods (FEM)

HAPs

 Guidance Materials by Pollutant Class (e.g. VOCs)

Source Testing

Test Methods/Alternative Test Methods

Environmental Regulation

Process Used to Ensure Data Quality for Use in NAAQS Decisions

Activity/Procedure	Regulation
FRM/FEM Instrument Approval (1-2 year process)	40 CFR Part 53.20 40 CFR Part 58 Appendix C Ambient Air Monitoring Methodology
Meet method requirements for NAAQS attainment	40 CFR Part 50 Appendices
QAPP approval	40 CFR Part 58 Appendix A and EPA QA Policy
Minimum QA/QC Requirements (e.g. calibration, zero/span checks)	40 CFR Part 58 Appendix A QA Handbook Volume II
Siting Requirements	40 CFR Part 58 Appendix E
Annual Data Certification	40 CFR Part 58.15
Meet reporting requirements	40 CFR Part 58.15

National Air Toxics Trends Stations (NATTS) information can be found at http://www.epa.gov/ttn/amtic/natts.html Methods and Procedures for Source Testing and Monitoring http://www.epa.gov/ttn/emc/tmethods.html

Data Application¹

Tier	Application Area	Pollutants	Precision & Bias Error ²	Data Completeness ²
I	Education and Information	All	<50%	≥ 50%
II	Hotspot Identification and Characterization	All	<30%	≥ 75%
III	Supplemental Monitoring	Criteria pollutants, Air Toxics (incl. VOCs)	<20%	≥ 80%
IV	Personal Exposure	All	<30%	≥ 80%
V	Regulatory Monitoring	O_3 CO, SO_2 NO_2 $PM_{2.5}, PM_{10}$	<7% <10% <15% <10%	≥ 75%

^{1.} These are guidelines only (Tier I- Tier IV), and are likely to evolve over time as technology continues to develop and the state of the science continues to advance. The amount of data needed for any air quality purpose is highly specific to that purpose and could range from minutes to even years of data measurements.

^{2.} Precision, bias, and data completeness requirements in part were taken from Appendix D of the *EPA Quality Assurance Handbook for Air Pollution Measurement Systems Volume II* (May 2013 edition). Refer to 40 CFR Parts 50, 53, 58, and the QA Handbook Volume II for all activities/criteria required for monitoring network data.

Data Application

- Informing Network Design
 - Locate monitor in high concentration areas
- Provide insight into near road concentrations (NO₂)
- Personal Exposure Monitoring
- Risk assessment
 - Characterization & Modeling
- Permitting
 - Help understand background pollutant concentrations
- Fenceline Monitoring

Data Application - Example

Pre-Construction PSD Permit

Permitting agency may require post-construction monitoring


Role for Sensors?

Monitor for one year CAA Section 165(c)(2)

Existing source expansion – option for monitoring*

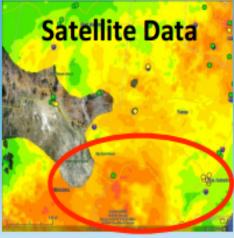
*Use sensors in design phase to inform placement of regulatory monitor

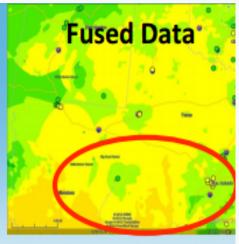
Data Collection Needs

Data Collection Needs for Supplemental Network Monitoring Data

Variable				
Name of Sensor	Ongoing QA checks			
Sensor ID	Bias and Precision Results			
Pollutant	Meteorological Measurements			
Concentration	Units			
Date of Measurement	Minimum Detection Limit			
Latitude and Longitude	Pollutant Concentration Range			
Averaging Time of Measurement	Response Time			
Date of Sensor Origin	Interferents			

Data Fusion




AIRNow Satellite Data Processor (ASDP) Project

Messaging

The Air Quality Index

Not for use to interpret non-regulatory data

Air Quality Index (AQI) Values	Levels of Health Concern	Colors	
When the AQI is in this range:	air quality conditions are:	as symbolized by this color:	
0-50	Good	Green	
51-100	Moderate	Yellow	
101-150	Unhealthy for Sensitive Groups	Orange	
151 to 200	Unhealthy	Red	
201 to 300	Very Unhealthy	Purple	
301 to 500	Hazardous	Maroon	

AQI focuses on health effects experienced within a few hours or days

Messaging

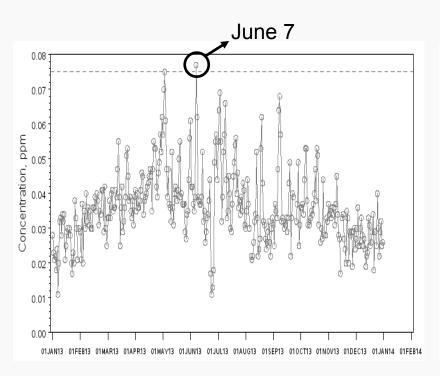
Factors to Consider for Reducing Exposure & Protecting Your Health:

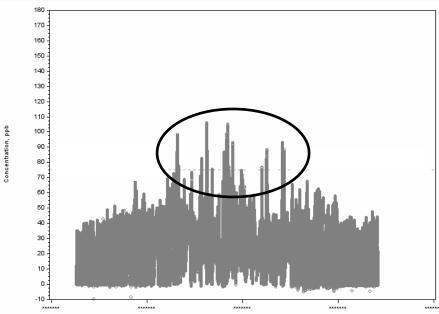
- 1) Concentration Amount of pollution in the air
- 2) Ventilation Rate How hard and fast you're breathing
- 3) Duration of Exposure Length of activity

Messaging for Short-term Concentration Readings

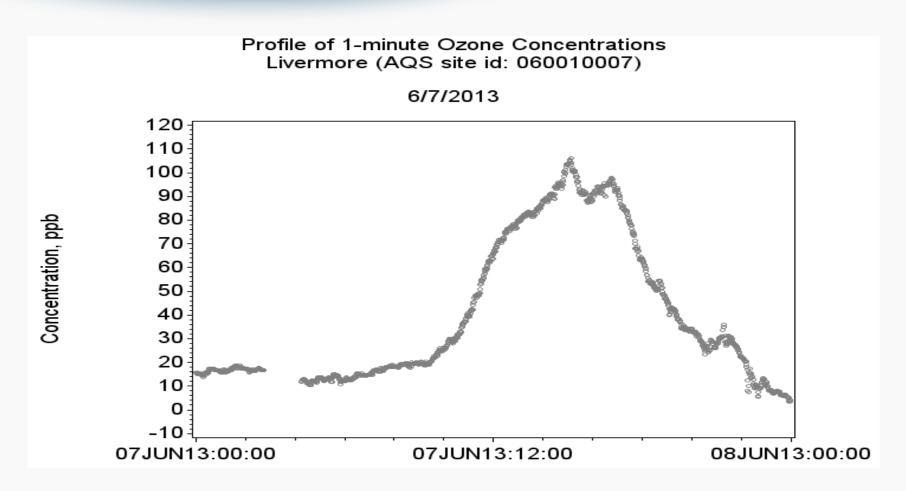
Example Questions to Answer:

- What does it mean?
- Am I in danger?
- Should I take action?
- How does my sensor reading relate to the Air Quality Index (AQI)?
- Additional FAQs and Responses

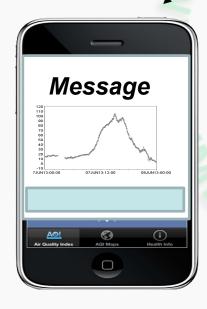

High


Medium

Low



Profiles of Max 8-Hour and 1-Minute Ozone Concentrations Livermore California (2013)



Proposed Project:

Mobile App Development Sensor Messaging Webpage Focus Group Study

Acknowledgements

- o Bryan Hubbell
- Michael Stewart
- Alison Davis
- Holly Wilson
- Susan Stone
- Phil Lorang
- Nicholas Swanson
- David Mintz
- o Richard Wayland
- o Phil Dickerson

- Mike Papp
- Jason Dewees
- Kirk Baker
- James Hemby
- Ron Evans
- ChrisChapman
- Brad Johns
- John White
- o ORD
- OECA

Email:

benedict.kristen@epa.gov

Office of Air Quality Planning and Standards